L'état

de l'Enseignement supérieur et de la Recherche en France

45 indicateurs

publication.enseignementsup-recherche.gouv.fr/eesr/6/

NOUVEAU

Version numérique interactive

Cet ouvrage est édité par Le ministère de l'Enseignement supérieur

Sous-direction des systèmes d'information et études statistiques

1, rue Descartes
75231 Paris cedex 05

et de la Recherche

Directeur de la publication

Olivier Lefebvre

Rédacteur en chef Emmanuel Weisenburger

Auteurs

Feres Belghith Marc Bideault Annie Bretagnolle Luc Brière Julien Calmand Jean-Pierre Dalous Aurélie Demongeot
Brigitte Dethare
Ghislaine Filliatreau
Samuel Fouquet
Joëlle Grille
Clément Guillo
Caroline Iannone
Christophe Jaggers
Martine Jeljoul
Nadine Laïb
Simon Le Corgne
Béatrice Le Rhun
Nicolas Le Ru
Isabelle Maetz
Claude Malègue

Stéphane Montenache

Claudette-Vincent Nisslé

Pascale Poulet-Coulibando

François Musitelli

Sylvaine Péan

Chris Roth

Laurent Perrain

Catherine David

Marguerite Rudolf Frédérique Sachwald Fanny Thomas Élise Verley

Conception graphiqueCorinne Jadas

Impression Ovation

Vente DEPP/DVE 61, 65, rue Dutot 75735 Paris cedex 15

Sommaire

enseignement supérieur

	La dépense d'éducation pour l'enseignement supérieur
	La dépense pour l'enseignement supérieur dans les pays de l'OCDE
	L'aide sociale aux étudiants
	Les personnels enseignants de l'enseignement supérieur public sous tutelle du MESR
	les personnels non enseignants de l'enseignement supérieur public sous tutelle du MESR
	Qualification et recrutement des enseignants-chercheurs
	La réussite au baccalauréat
80	Les évolutions de l'enseignement supérieur depuis 50 ans : croissance et diversification
	L'accès à l'enseignement supérieur
	Le profil des nouveaux bacheliers entrant dans les principales filières du supérieur
	La scolarisation dans l'enseignement supérieur
	L'apprentissage dans le supérieur
	Les étudiants étrangers dans l'enseignement supérieur
	La vie étudiante : fragilités psychologiques
	La vie étudiante : transports et déplacements quotidien
	La vie étudiante : le travail rémunéré
	Parcours et réussite en STS, IUT et CPGE
	Les parcours et la réussite à l'université
	La formation continue dans l'enseignement supérieur
	le niveau d'études de la population et des jeunes
	le niveau d'études selon le milieu social
	l'insertion professionnelle des diplômés de l'université (Master, DUT, LP)
	Le début de carrière des jeunes sortant de l'enseignement supérieur
	Les étudiants handicapés à l'université
	la parité dans l'enseignement supérieur

recherche

26	Le financement et l'exécution de la R&D en France
27	les objectifs socio-économiques des crédits budgétaires consacrés à la recherche
28	Le financement de la R&T par les collectivités territoriales
29	L'effort de recherche et développement en France
30	les dépenses intérieures de recherche et développement
31	Le financement des activités de recherche et développement
32	Le crédit d'impôt recherche, dispositif de soutien à la R&D des entreprises
33	Les moyens humains de la recherche et développement
34	La formation par la recherche
35	Les dépenses de recherche dans les organismes publics
36	Les chercheurs en entreprise
37	Les Jeunes Entreprises Innovantes
38	La R&D en biotechnologie dans les entreprises
39	la R&D en développement de logiciels, en nouveaux matériaux et en nanotechnologies dans les entreprises
40	La recherche en environnement
41	La France dans l'espace européen de la recherche via sa participation au PCRD
42	Les publications scientifiques de la France
43	Le positionnement de la France dans le monde par ses publications scientifiques
44	La production technologique de la France mesurée par les demandes de brevet auprès de l'Office européen des brevets
45	La production technologique de la France mesurée par les brevets de l'Office américain des brevets

En 2010, toutes disciplines confondues, la France a contribué à 3,9 % des publications scientifiques mondiales. Si la recherche française présente une forte spécialisation dans la grande discipline Mathématiques et dans la discipline « astronomie, astrophysique », c'est dans les disciplines « agriculture, biologie végétale », « chimie générale » et « agroalimentaire » que ses publications sont les plus citées au niveau international.

> n 2010, la part de la France dans la production mondiale de publications scientifiques toutes disciplines confondues est de 3.9 % et sa part de citations immédiates (à deux ans) de 4,2 %. Son indice d'impact immédiat (rapport entre la part de citations et la part de publications) est de 1,06, dépassant la moyenne mondiale qui est de 1 par construction (graphique 01). Au début des années 1990, la part mondiale de publications de la France croît pour dépasser 5 % en 1995, puis elle reste stable. A partir de 1999, cette part baisse de façon continue, notamment du fait de l'arrivée de nouveaux pays sur la scène scientifique internationale. La part mondiale de citations de la France s'effrite entre 2001 et 2004, mais se stabilise par la suite. Cependant, l'indice d'impact de la France s'est sensiblement amélioré sur l'ensemble de la période, passant d'environ 0.91 en 1993 à 1.06 en 2010.

> En 2010, le profil disciplinaire de la France apparaît équilibré, excepté une forte spécialisation en Mathématiques (indice de spécialisation de 1,53) et une déspécialisation en Sciences sociales (indice de 0.46). Les indices de spécialisation sont légèrement supérieurs à 1 en Physique et Sciences de l'Univers. et inférieurs à 1 en Biologie appliquée - écologie. Chimie et Sciences humaines (graphique 02). Entre 2005 et 2010, la France a renforcé sa spécialisation en Sciences sociales (+ 19 %), Sciences pour l'ingénieur (+ 8 %) et Biologie appliquée - écologie (+ 7 %). Par contraste, l'indice de spécialisation en Mathématiques diminue de - 9 %.

> En 2010, à l'exception de la Recherche médicale et des Sciences humaines et sociales, la visibilité des publications de la France (indice d'impact observé) et celle de leurs journaux de parution (indice d'impact espéré) sont

supérieures à la moyenne mondiale (graphique 03). C'est en Biologie appliquée - écologie et, dans une moindre mesure, en Chimie et en Physique, Sciences de l'Univers et Sciences pour l'ingénieur que les publications françaises sont, en moyenne, les plus visibles. Parallèlement, c'est aussi dans ces grandes disciplines que les publications françaises paraissent dans des revues de plus forte visibilité internationale. Entre 2005 et 2010, l'indice d'impact observé et l'indice d'impact espéré de la France progressent pour l'ensemble des grandes disciplines à l'exception des Mathématiques. C'est en Biologie appliquée - écologie, Chimie, Sciences de l'Univers, Physique, Recherche médicale et Sciences humaines et sociales que la visibilité des publications françaises et celle de leurs journaux de publication progressent le plus.

En 2010, la France contribue pour 5 % à 6 % aux publications mondiales en Mathématiques et dans les disciplines « astronomie, astrophysique », « géosciences » et « microbiologie, virologie et immunologie » (tableau 04a). Entre 2005 et 20010 la part mondiale de la France s'effrite dans la plupart de ses dix premières disciplines de publication.

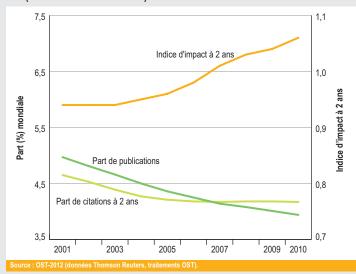
En 2010, l'indice d'impact de la France dépasse 1,25 dans six disciplines (tableau 04b). Entre 2005 et 2010, la visibilité des publications françaises progresse globalement dans ses dix premières disciplines de visibilité, et notamment de plus de 20 % en « écologie, biologie marine », « chimie générale » et « physique générale ». C'est en « géosciences », « physique générale », « physique des particules, nucléaire » et « chimie organique, minérale, nucléaire » que la France est à la fois très présente et que ses publications sont les plus visibles.

La base de données bibliographiques utilisée est construite à partir de la base de périodiques scientifiques Web of Science de Thomson Reuters.

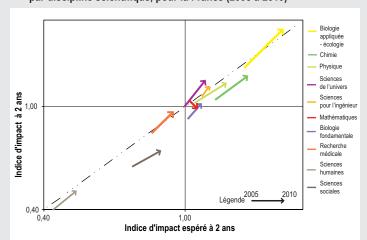
Les publications françaises sont celles dont l'un au moins des laboratoires signataires est situé en France : lorsque l'article est signé par un laboratoire unique, français par exemple, un point est attribué à la France : mais si l'article est cosigné par des laboratoires dans deux pays différents, un demi-point est affecté à chacun des pays. Ce type de calcul fractionnaire mesure la contribution d'un pays à la production mondiale. Pour renforcer la robustesse des indicateurs, ils sont calculés en année lissée sur trois ans ; la valeur de l'année 2010 est la moyenne des valeurs des années 2008, 2009 et 2010.

La part mondiale de publications d'un pays est le rapport entre le nombre de publications du pays et le nombre de publications produites la même année dans le monde, telles que répertoriées dans la base.

La part mondiale de citations à 2 ans (immédiates) est calculée sur deux ans. incluant l'année de publication.

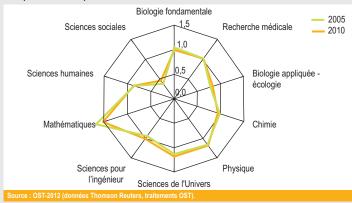

L'indice d'impact observé à 2 ans (immédiat) d'un pays est le rapport entre sa part mondiale de citations à 2 ans et sa part mondiale de publications.

L'indice d'impact espéré à 2 ans (immédiat) d'un pays est l'indice d'impact qu'obtiendrait le pays si ses publications étaient citées comme la moyenne des publications des journaux dans lesquels il publie (on tient compte ainsi de la notoriété des journaux).


L'indice de spécialisation est le rapport de la part mondiale de publications dans une discipline à la part mondiale, toutes disciplines confondues.

Source: OST-2012.

01 Part mondiale de publications et de citations et indice d'impact à 2 ans, toutes disciplines confondues, pour la France (évolution de 2001 à 2010)


03 Indice d'impact espéré à 2 ans et indice d'impact à 2 ans, par discipline scientifique, pour la France (2005 à 2010)

En 2005, la visibilité des publications de la France (indice d'impact en ordonnée) en Science de l'Univers est supérieure à la visibilité moyenne des publications dans les mêmes revues de parution (indice d'impact espéré en abscisse), les deux étant proches de la moyenne mondiale qui est de 1 par construction. Entre 2005 et 2010, la visibilité des publications en Sciences de l'Univers et celle de leurs revues de parution augmentent et dépassent sensiblement la moyenne mondiale dans cette discipline.

Source: OST-2012 (données Thomson Reuters, traitements OST).

02 Indice de spécialisation, par discipline scientifique, pour la France (2005 et 2010)

04 Part mondiale de publications et indice d'impact à 2 ans, pour la France (2010 et évolution de 2005 à 2010)

a) premières sous-disciplines scientifiques de production

2010 6,0 5,8 5,2 5,2		0,97 1,22
5,8 5,2 5,2	+ 2 - 6	
5,2 5,2	- 6	1,22
5,2		1,22 0.96
	- 9	0,96
4,8	- 15	1,25
4,6	+ 17	0,88
4,6	- 11	1,20
4,5	0	1,00
4,4	- 6	1,11
4,4	+ 3	0,87
4,1	- 9	1,05
	4,6 4,5 4,4 4,4 4,1	4,6 - 11 4,5 0 4,4 - 6 4,4 + 3

b) sous-disciplines scientifiques les plus visibles

	Part mondiale (%)	Indice d'impact à 2 ans		
	de publications		Evolution	
Sous-discipline	2010	2010	2010/2005 (%)	
Agriculture, biologie végétale	3,2	1,63	+ 18	
Chimie générale	3,3	1,35	+ 22	
Agroalimentaire	2,8	1,34	+ 5	
Écologie, biologie marine	3,3	1,33	+ 24	
Génie civil, minier	2,9	1,29	- 11	
Physique générale	4,8	1,25	+ 24	
Géosciences	5,2	1,22	+ 13	
Chimie organique, minérale, nucléaire	4,6	1,20	+ 15	
STIC : génie électrique et électronique	3,6	1,11	+ 4	
Physique des particules, nucléaire	4,4	1,11	+ 8	
Toutes disciplines	4,1	1,05	+ 10	
Source : OST-2012 (données Thomson Reuters, traite	ments OST)			

L'état de l'Enseignement supérieur et de la Recherche en France

L'état de l'Enseignement supérieur et de la Recherche constitue un état des lieux annuel et chiffré du système français, de ses évolutions, des moyens qu'il met en œuvre et de ses résultats, en le situant, chaque fois que les données le permettent, au niveau international. Chacune des 45 fiches présente sur une double page au moyen de graphiques, de tableaux et de commentaires, les dernières données de synthèse disponibles sur chaque sujet.

Ministère de l'Enseignement supérieur et de la Recherche DGESIP/DGRI-SIES Sous-direction des systèmes d'information et études statistiques 1, rue Descartes – 75231 Paris CEDEX 05 DEPP/Département de la valorisation et de l'édition

61-65, rue Dutot - 75232 Paris CEDEX 15

16 €

DEPP 005 12 450 ISSN 1962-2546

Dépôt légal 1^{er} trimestre 2013 ISBN 978-2-11-099374-8

